
Getting Started with R

Sven Otto

April 16, 2024

Table of contents

Welcome 3
Why R? . 3
Matrix algebra . 4
Accompanying R scripts . 4
Comments . 4

1 Base R 5
1.1 Short Glossary . 5
1.2 First Steps . 5
1.3 Vectors and functions . 6
1.4 Further Data Objects . 9

1.4.1 The matrix . 9
1.4.2 The list . 10
1.4.3 The data frame . 11
1.4.4 The ts object . 13

2 Packages 16
2.1 The xts package . 16
2.2 Data packages . 17
2.3 The tidyverse . 20

2

Welcome

This tutorial aims to serve as an introduction to the software package R. Other excellent and
much more exhaustive tutorials can be found at the following links:

• An interactive R-package for learning R: swirl (highly recommended for beginners).
• Interactive R courses at Datacamp and Coursera (free, but registration required).
• Learn R in 30 minutes: link.
• Video series by Nick Huntington-Klein: Introduction to R for Economists.
• The official introduction and reference cards for basic R and time series analysis.
• Some excellent books:

– Hands-On Programming with R (for absolute beginners)
– R for Data Science (R and the tidyverse)
– Advanced R (improve your programming skills)
– R Codebook (proven recipes for data analysis)
– Forecasting: Principles and Practice (time series analysis in R)
– R Packages (write your own R package)
– HappyGitWithR (version control with RStudio)

Why R?

• R is free of charge. On the R project webpage cran.r-project.org, you can download
R for Windows, Mac OS, or Linux. Windows users can also directly follow this link:
cran.r-project.org/bin/windows/base/

• You can use R via a terminal or install an IDE, which is much more convenient.
The celebrated IDE RStudio for R is also free of charge. Download RStudio here:
posit.co/download/rstudio-desktop/. Make sure that you install R before installing
RStudio.

• Within RStudio, you can use Quarto, which provides an authoring framework to export
your R code/outputs/plots together with LaTeX formulas and text as a PDF file or
website in an appealing way. Have a look here. This website is also built with Quarto.
You may want to use Quarto for your assignments, term papers, or thesis.

• R is equipped with one of the most flexible and powerful graphics routines available
anywhere. Check out these repositories with examples of appealing and informative R
graphs: Clean Graphs, R Graph Catalog, Publication Ready Plots.

3

https://swirlstats.com/
https://www.datacamp.com/courses/free-introduction-to-r
https://www.coursera.org/learn/r-programming
https://www.youtube.com/watch?v=yZ0bV2Afkjc
https://www.youtube.com/watch?v=kD1qq5tBrLg&list=PLcTBLulJV_AIuXCxr__V8XAzWZosMQIfW
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
http://cran.r-project.org/doc/contrib/refcard.pdf
https://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf
https://rstudio-education.github.io/hopr/
https://r4ds.hadley.nz/
https://adv-r.hadley.nz/
https://rc2e.com/
https://otexts.com/fpp3/
https://r-pkgs.org/
https://happygitwithr.com/
https://cran.r-project.org/
https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://quarto.org/docs/get-started/hello/rstudio.html
http://shinyapps.org/apps/RGraphCompendium/index.php
https://shiny.srvanderplas.com/r-graph-catalog/
http://www.sthda.com/english/rpkgs/ggpubr/

• One of the best features of R are the large number of contributed packages from the
statistical community. You find R packages for almost any statistical method out there
and many statisticians provide R packages to accompany their research.

• R is the de-facto standard for statistical science.

Matrix algebra

R is a matrix-based programming language. Matrix algebra provides an efficient framework
for analyzing and implementing econometric methods. To refresh your matrix algebra skills
and to learn how to use it in R, please check out my Crash Course on Matrix Algebra in
R.

Accompanying R scripts

All R codes of the different sections can be found here:

• rintro-sec1.R.
• rintro-sec2.R.

Comments

Feedback is welcome. If you notice any typos or issues, please report them on GitHub or email
me at sven.otto@uni-koeln.de.

4

https://matrix.svenotto.com/
https://matrix.svenotto.com/
https://rintro.svenotto.com/rintro-sec1.R
https://rintro.svenotto.com/rintro-sec2.R
https://github.com/ottosven/rintro/issues/new

1 Base R

1.1 Short Glossary

Let’s start the tutorial with a (very) short glossary:

• Console: The thing with the > sign at the beginning.
• Script file: An ordinary text file with suffix .R. For instance, yourfilename.R.
• Working directory: The file directory you are working in. If no directory is explicitly

specified when loading data, then R assumes that the data is located in the working
directory. Useful commands: with getwd(), you get the location of your current working
directory, and setwd() allows you to set a new location for it.

• Workspace: This is a hidden file (stored in the working directory as .RData) where all
objects you use (e.g., data, matrices, vectors, variables, functions, etc.) are stored. When
you close RStudio, you will be asked if you want to save or delete the session’s workspace.
If you save it, it will be loaded automatically with the next R session, provided you start
R in the corresponding working directory. Useful commands: ls() shows all elements in
our current workspace, and rm(list=ls()) deletes all elements in our current workspace.

1.2 First Steps

A good idea is to use a script file like myscipt.R to store your R commands. You can send
single lines or marked areas of your R code to the console by pressing the CTRL+RETURN
(STRG+ENTER) keys.

To start with baby steps, we do some simple calculations:

2+2 # addition

[1] 4

2*2 # multiplication

[1] 4

5

2/2

[1] 1

2-2

[1] 0

2^3 # exponentiate

[1] 8

Note: Anything written after the # sign will be ignored by R, which is very useful for com-
menting on your code.

The assignment operator <- will be your most often-used tool. Here is an example of
creating a scalar variable:

x <- 4
x

[1] 4

4 -> x # possible but unusual
x

[1] 4

x = 4
x

[1] 4

Note: The R community loves the <- assignment operator. Alternatively, you can use the =
operator.

1.3 Vectors and functions

And now a more interesting object - a vector:

6

y = c(2,7,4,1)
y

[1] 2 7 4 1

The command ls() shows the total content of your current workspace, and the command
rm(list=ls()) deletes all elements of your current workspace:

ls()

[1] "has_annotations" "x" "y"

rm(list=ls())
ls()

character(0)

Note: RStudio’s Environment pane also lists all the elements in your current workspace.
That is, the command ls() becomes a bit obsolete when working with RStudio.

Let’s try how we can compute with vectors and scalars in R.

x = 4
y = c(2,7,4,1)

x*y # each element in the vector y is multiplied by the scalar x

[1] 8 28 16 4

y*y # a term-by-term product of the elements in y

[1] 4 49 16 1

The term-by-term execution, as in the above example, y*y, is a main strength of R. We can
conduct many operations vector-wisely:

7

y^2

[1] 4 49 16 1

log(y)

[1] 0.6931472 1.9459101 1.3862944 0.0000000

exp(y)

[1] 7.389056 1096.633158 54.598150 2.718282

y-mean(y)

[1] -1.5 3.5 0.5 -2.5

(y-mean(y))/sd(y) # standardization

[1] -0.5669467 1.3228757 0.1889822 -0.9449112

Element-wise operations are a central characteristic of matrix-based languages like R (or Mat-
lab). Other programming languages often have to use loops instead:

N = length(y)
1:N

y.sq = rep(0,N)
y.sq

for(i in 1:N){
y.sq[i] = y[i]^2
if(i == N){

print(y.sq)
}

}

8

The for()-loop is the most common loop, but there is also a while()-loop and a repeat()-
loop. However, loops in R can be relatively slow. Therefore, try to avoid them!

Useful commands to produce sequences of numbers:

1:10
-10:10
?seq # Help for the seq()-function
seq(from=1, to=100, by=7) # sequence generation
rep(0,10) # replicate elements

The []-operator selects elements of vectors:

y[c(2,4)]

[1] 7 1

Element selections can be made on a more logical basis, too. For example, if you want only
the elements of the vector y that are strictly greater than 2:

y[y>2]

[1] 7 4

Note that this gives you a boolean vector:
y>2

[1] FALSE TRUE TRUE FALSE

Note: Logical operations return so-called boolean objects, i.e., a TRUE or a FALSE. For instance,
if we ask R whether 1>2, we get the answer FALSE.

1.4 Further Data Objects

Besides the classical data objects like scalars and vectors, there are many other objects in R:

1.4.1 The matrix

A matrix is a rectangular array of numbers.

9

mymatrix = matrix(data=1:16, nrow=4, ncol=4)
mymatrix

[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

Matrices are extremely useful for theoretically analyzing statistical methods and implementing
them practically.

Matrix Algebra in R

To refresh your matrix algebra skills with implementations in R, check out my Crash
Course on Matrix Algebra in R.

1.4.2 The list

In lists, you can organize different kinds of data. E.g., consider the following example:

mylist = list(
"Some_Numbers" = c(66, 76, 55, 12, 4, 66, 8, 99),
"Animals" = c("Rabbit", "Cat", "Elefant"),
"My_Series" = c(30:1)

)

A very useful function to find specific values and entries within lists is the str()-function:

str(mylist)

List of 3
$ Some_Numbers: num [1:8] 66 76 55 12 4 66 8 99
$ Animals : chr [1:3] "Rabbit" "Cat" "Elefant"
$ My_Series : int [1:30] 30 29 28 27 26 25 24 23 22 21 ...

10

https://matrix.svenotto.com/
https://matrix.svenotto.com/

1.4.3 The data frame

A data.frame is a list object with more formal restrictions (e.g., an equal number of rows
for all columns). As indicated by its name, a data.frame object is designed to store data:

mydataframe = data.frame(
"Credit_Default" = c(0, 0, 1, 0, 1, 1),
"Age" = c(35,41,55,36,44,26),
"Loan_in_1000_EUR" = c(55,65,23,12,98,76)

)

The data() command lists all sample data sets available in R. Let us have a look at the dataset
mtcars. It is a dara.frame object and contains data on several aspects of 32 automobiles from
1974.

mtcars

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4

11

Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

With the function subset we can select variables and subsets of a dataframe. Let’s create a
scatterplot of the variables mpg (miles per gallon) and wt weight (in 1000 lbs).

plot(subset(mtcars, select = c(wt, mpg)))

2 3 4 5

10
15

20
25

30

wt

m
pg

A data.frame is also useful in a time series context. Since time series data typically include
a calendar date for each observation, the observation and date can be stored together as a
data.frame. R provides the class Date for calendar dates, which can be generated with the
function as.Date().

d = as.Date("2021-04-01") # a data object to store dates
class(d) # to get the object class

[1] "Date"

12

myseries = c(16,17,18,16,15,19)
mydates = seq.Date(as.Date("2021-04-01"), by=1, length.out = 6)
mytimeseries = data.frame(mydates, myseries)
mytimeseries

mydates myseries
1 2021-04-01 16
2 2021-04-02 17
3 2021-04-03 18
4 2021-04-04 16
5 2021-04-05 15
6 2021-04-06 19

1.4.4 The ts object

A ts (time series) object is tailored explicitly to time series with a yearly time basis and an
equidistant observation horizon, such as annual, quarterly, and monthly data. It assigns a
specific year/quarter/month to each vector entry.

myts = ts(c(66, 76, 55, 12, 4, 66, 8, 99), start = 2020, frequency = 4)
myts

Qtr1 Qtr2 Qtr3 Qtr4
2020 66 76 55 12
2021 4 66 8 99

anothertimeseries = ts(1:50, start = 2015, frequency = 12)
anothertimeseries

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015 1 2 3 4 5 6 7 8 9 10 11 12
2016 13 14 15 16 17 18 19 20 21 22 23 24
2017 25 26 27 28 29 30 31 32 33 34 35 36
2018 37 38 39 40 41 42 43 44 45 46 47 48
2019 49 50

The window() command selects the time series observations for a given subperiod
window(anothertimeseries, start=2015.5, end=2017.5)

13

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015 7 8 9 10 11 12
2016 13 14 15 16 17 18 19 20 21 22 23 24
2017 25 26 27 28 29 30 31

The data() command lists all sample data sets available in R. Let us have a look at the dataset
AirPassengers. It is a ts object and contains data on monthly totals of international airline
passengers from 1949 to 1960.

data() # lists all datasets currently loaded in the R environment
?AirPassengers # get more information about the dataset
AirPassengers

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

class(AirPassengers) # AirPassengers is a ts object

[1] "ts"

plot(AirPassengers)

14

Time

A
irP

as
se

ng
er

s

1950 1952 1954 1956 1958 1960

10
0

30
0

50
0

15

2 Packages

One of the best features of R are the large number of contributed packages from the statistical
community. The list of all packages on CRAN is impressive! Take a look at it here. You find R
packages for almost any statistical method out there. Many statisticians provide R packages
to accompany their research. Some packages also provide additional functionality for R or
include datasets.

2.1 The xts package

Let us look at a time series specific package: the xts package. It can be installed using the
install.packages() function.

install.packages("xts")

The xts package provides the class xts, which has certain advantages over ts. A ts object can
specify the frequency of a time series only as a portion of a year (1 for yearly, 4 for quarterly,
12 for monthly data). This scheme is convenient for regular macroeconomic time series but
impractical for daily data (leap year problem), high-frequency data, or irregularly collected
data. In an xts object, we are much more flexible and manually assign a specific time index
to each observation in the time series.

Once installed, the package only has to be loaded at the beginning of a new R session, which
is done with the command library(xts).

library(xts)
myts = ts(c(66, 76, 55, 12, 4, 66, 8, 99), start = 2020, frequency = 4)
as.xts(myts) # convert a ts object into an xts object

[,1]
2020 Q1 66
2020 Q2 76
2020 Q3 55
2020 Q4 12
2021 Q1 4

16

https://cran.r-project.org/web/packages/available_packages_by_name.html

2021 Q2 66
2021 Q3 8
2021 Q4 99

we may assign irregular time points:
dates = seq.Date(as.Date("2023-01-01"), by = 7, length.out = 7)
dates[8] = as.Date("2023-03-01")
my.xts = xts(myts, dates)
plot(my.xts)

Jan 01
2023

Jan 08
2023

Jan 15
2023

Jan 22
2023

Jan 29
2023

Feb 05
2023

Feb 12
2023

Mär 01
2023

my.xts 2023−01−01 / 2023−03−01

20

40

60

80

20

40

60

80

2.2 Data packages

For teaching, I have created the package teachingdata, which contains some current datasets.
The package is not available on CRAN (your package must meet specific quality standards
and go through a review process to be accepted there), but I have created a GitHub repository
to make it accessible. We need the package remotes and its function install_github() to
install a package from a GitHub repository.

install.packages("remotes")
remotes::install_github("ottosven/teachingdata")

Let’s have a closer look at the data from the teachingdata package.

library(teachingdata)
data(package = "teachingdata")
plot(gdp, main = "Quarterly GDP Germany")

17

Quarterly GDP Germany

Time

gd
p

1990 1995 2000 2005 2010 2015 2020 2025

40
0

60
0

80
0

10
00

plot(infl, main="Monthly CPI inflation rate Germany")

Monthly CPI inflation rate Germany

Time

in
fl

1995 2000 2005 2010 2015 2020 2025

0
2

4
6

8

18

plot(temp, main="Average temperature Germany")

Average temperature Germany

Time

te
m

p

1880 1900 1920 1940 1960 1980 2000 2020

7
8

9
10

plot(covidcases$date, covidcases$GER, type="l",
main="Incidence number of reported Covid-19 infections Germany")

19

2022 2023

0
50

0
10

00
15

00

Incidence number of reported Covid−19 infections Germany

covidcases$date

co
vi

dc
as

es
$G

E
R

2.3 The tidyverse

The tidyverse is a collection of packages that lets you import, manipulate, explore, visualize,
and model data in a harmonized and consistent way.

Installing the tidyverse package:

install.packages("tidyverse")

In this lecture, we will mainly use R to theoretically understand the learned statistical and
econometric methods and apply them illustratively. For this purpose, base R is entirely suffi-
cient. However, tidyverse has become state of the art for applied work with large data sets
and is especially recommended for data management and visualization.

To give you a flavor of the tidyverse, let us briefly discuss the ggplot2 and tibble packages,
which are part of the tidyverse.

library(tidyverse)

Nice plots can be produced using the R-package ggplot2. Let’s plot the iris dataset, which
is contained in base R.

20

class(iris) # iris is a data.frame

[1] "data.frame"

iris |>
ggplot(aes(x = Sepal.Length, y = Petal.Length, color = Species)) +
geom_point()

2

4

6

5 6 7 8
Sepal.Length

P
et

al
.L

en
gt

h Species

setosa

versicolor

virginica

A data.frame in the tidyverse is called tibble. A tibble is sometimes more flexible and
convenient for manipulating and printing data. Let’s transform the iris data frame into a
tibble.

iris.tbl = as_tibble(iris)
iris.tbl # iris.tbl is a tibble

A tibble: 150 x 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

<dbl> <dbl> <dbl> <dbl> <fct>

21

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
i 140 more rows

As an extension, a tsibble object is a tibble with an additional time series structure. It
contains a specific index variable corresponding to the observation’s time index. Let us con-
vert the covidcases data into a tsibble. To visualize a tsibble we also need the fable
package.

library(tsibble)
library(fable)

In a tsibble object, we can define so-called key variables, which define the subjects or indi-
viduals measured over time. Key variables also allow easy processing of panel data in R.

In the covidcases example, the key variables are the federal states, and the time series is
the incidence numbers. Since a simultaneous display of the curves of all federal states would
produce a very cluttered plot, we select only the total Germany, Nordrhein-Westfalen, and
Berlin. The different steps can be represented in tidyverse as a sequence of multiple operations
using the pipe operator |> (other pipes like %>%do a similar job).

covid.tsibble = as_tsibble(covidcases, index=date) |>
pivot_longer(-date, names_to = "state", values_to = "incidence") |>
filter(state %in% c("GER", "NW", "BE"))

covid.tsibble

A tsibble: 1,689 x 3 [1D]
Key: state [3]

date state incidence
<date> <chr> <dbl>

1 2021-09-11 BE 83.5
2 2021-09-11 NW 103.
3 2021-09-11 GER 82.7
4 2021-09-12 BE 84.3

22

5 2021-09-12 NW 101.
6 2021-09-12 GER 80.1
7 2021-09-13 BE 83.7
8 2021-09-13 NW 99.3
9 2021-09-13 GER 81.8
10 2021-09-14 BE 84.9
i 1,679 more rows

covid.tsibble |>
autoplot(incidence) + theme(axis.title.x=element_blank())

0

500

1000

1500

2022−01 2022−07 2023−01

in
ci

de
nc

e

state

BE

GER

NW

For an introduction to the tidyverse and to learn more about the packages and functions
used above, have a look at the book R for Data Science. To learn more about visualizing and
analyzing time series data using the tsibble and fable packages, I recommend the textbook
Forecasting: principles and practice.

23

https://r4ds.hadley.nz/
https://otexts.com/fpp3/

	Welcome
	Why R?
	Matrix algebra
	Accompanying R scripts
	Comments

	Base R
	Short Glossary
	First Steps
	Vectors and functions
	Further Data Objects
	The matrix
	The list
	The data frame
	The ts object

	Packages
	The xts package
	Data packages
	The tidyverse

